Python com ML Básico
Carregando, aguarde alguns segundos.

18 - Técnicas de Ajuste de Hiperparâmetros como Grid Search e Random Search

O ajuste de hiperparâmetros é crucial para otimizar o desempenho dos modelos de aprendizado de máquina. Grid Search e Random Search são duas técnicas comuns usadas para esse fim.

Exemplo: Usar Grid Search para ajustar hiperparâmetros de um modelo SVM

import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.svm import SVC

# Carregar o conjunto de dados Iris
iris = load_iris()
X = pd.DataFrame(data=iris.data, columns=iris.feature_names)
y = pd.Series(iris.target)

# Dividir os dados em conjuntos de treinamento e teste
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Definir o modelo e o espaço de hiperparâmetros
model = SVC()
param_grid = {
    'C': [0.1, 1, 10],
    'kernel': ['linear', 'rbf'],
    'gamma': ['scale', 'auto']
}

# Aplicar Grid Search com validação cruzada
grid_search = GridSearchCV(model, param_grid, cv=5, scoring='accuracy')
grid_search.fit(X_train, y_train)

# Melhor conjunto de hiperparâmetros
print(f'Best Hyperparameters: {grid_search.best_params_}')

# Avaliar o modelo com os melhores hiperparâmetros
best_model = grid_search.best_estimator_
accuracy = best_model.score(X_test, y_test)
print(f'Accuracy: {accuracy}')
Arduino
Coautor
Betobyte
Autor
Autores
||| Áreas ||| Estatística ||| Python ||| Projetos ||| Dicas & Truques ||| Quantum ||| Python com ML Básico || Python para Iniciantes || Python Básico || Matplotlib || Numpy || Seaborn || Pandas || Django || Estatística para Cientistas de Dados || Python com ML Básico || Python com ML Básico || Aulas | Introdução (Introdução) | Guia Rápido do Python (Guia Rápido do Python) | Aprendizado (Aprendizado supervisionado, não supervisionado e por reforço) | Modelos (Modelos de Regressão e Classificação) | Agrupamento (Algoritmos de Agrupamento) | Pre-processamento de Dados (Pré-processamento de dados e técnicas de engenharia de características) | Métricas (Métricas de avaliação para modelos de ML) | Treinamento e Avaliação (Funções para pré-processamento de dados, treinamento de modelos e avaliação) | Seaborn e Matplotlib (Seaborn e Matplotlib para visualização) | Pandas (Pandas para processamento) | Scikit-learn (Scikit-learn, uma biblioteca de ML em Python) | R (Pacotes dplyr, caret e vip para R) | Emsemble e RNA (Métodos de ensemble e redes neurais artificiais) | Aplicações (Aplicações de aprendizado de máquina) | Matemática (Fundamentos matemáticos para ML) | Otimização (Métodos de otimização e treinamento de modelos) | Problemas Comuns (Problemas comuns de ML e MLOps) | Ferramentas de Nuvem (Ferramentas baseadas em nuvem como GCP, AWS e Microsoft Azure) | Frameworks e Bibliotecas DL (Ferramentas de MLOps de código aberto como MLflow) | Ajustes de Hiperparâmetros (Técnicas de ajuste de hiperparâmetros como grid search e random search) | Frameworks e Biblioteca DL (Frameworks e bibliotecas de deep learning como PyTorch e TensorFlow) | Implementação (Implementar soluções de ML com conjuntos de dados do mundo real) | NLP (Visão computacional e Processamento de Linguagem Natural (NLP)) | Arquiteturas DL (Arquiteturas avançadas de deep learning como RNNs e GANs) | Arquiteturas LLM (Arquiteturas de transformadores em LLMs (BERT e GPT)) | Design (Design de aprendizado por reforço e RAG) | Ciclo de Vida de MLOps (Ciclo de vida de MLOps e últimas tendências de pesquisa em ML) | Provedores (Provedores de nuvem e ferramentas de código aberto para ciclo de vida completo de MLOps) | Frameworks RL (Frameworks de aprendizado por reforço como OpenAI Gym) | Ferramentas LLM (Langchain e ferramentas similares para LLMs customizados) | Repositórios LLKM (Desenvolver ou usar LLMs de repositórios como Hugging Face) | Arquitetura DL (Arquiteturas de deep learning com TensorFlow / PyTorch) |